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Abstract
This paper extends the methods of [10] in an attempt to handle non-standard problems in
test analysis. The approach is based on a Bayesian framework where test characteristics
are treated as random parameters for which posterior probability assessments are available.
The generality of the approach permits straightforward analyses of problems that may be
difficult using standard classical test theory and standard item response theory. We first
illustrate the methods on aviation test scores where the test outcomes are not dichotomous
(i.e. correct and incorrect responses). Instead, the approach is modified to handle questions
with answers on a five-point ordinal scale. The second problem addresses the complica-
tion of the assessment of instructors in addition to the assessment of test questions and
students.

Keywords Empirical Bayes · Markov chain Monte Carlo · JAGS programming language

1 Introduction

The analysis of tests and questionnaires has an extensive literature which addresses prob-
lems across a spectrum of disciplines including educational testing, customer questionnaires,
opinion polls and social science surveys.
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Historically, the two main approaches in test analysis have been classical test theory
(CTT) and item response theory (IRT). Both approaches are used in practice and numerous
comparative studies have been undertaken (e.g. [1,3–5,9]). As research developments have
progressed, the distinction between classical test theory and item response theory has nar-
rowed.However, in a very brief andperhaps oversimplified comparisonof the twoapproaches,
CTT is the original testing framework which investigates the results of test questions on a
specific sample of respondents and has few (if any)modeling assumptions. One of the appeal-
ing aspects of CTT is that the corresponding statistics are relatively simple and guidelines
have been introduced for the assessment of these statistics. In the IRT framework, statistical
models form the backbone of the approach. The statistical models involve parameters that
distinguish particular aspects of both test questions and respondents. IRT relies on statistical
theory and is less accessible to some practioners. IRT has grown in many directions where
various models have been proposed. Notably, Bayesian implementations of IRT now exist
([2], Levy and Mislevy [6]), and these require another level of statistical sophistication on
the part of the practitioner.

Silva et al. [10] attempted to incorporate some of the best features of both CTT and IRT in
their approach to test analysis. Specifically, they attempted to retain some of the simplicity of
CTT which is appealing to practitioners. Also, like IRT, they developed an approach which
has inferential capability. In this paper, we demonstrate how the approach of Silva et al. [10]
can be easily extended to address nonstandard problems in test analysis. The use of the JAGS
programming language ([8]) facilitates extensions to these more complex testing scenarios.

In Sect. 2, we review the approach of Silva et al. [10] in the context of dichotomous
responses arising from test questions. In particular, we point out some advantages of the
testing framework. In Sect. 3, we generate a dataset intended to mimic data from the aviation
industry. In this case, the responses are no longer dichotomous but lie on a five-point ordinal
scale.We illustrate an analysis of this dataset based on small modifications to the basicmodel.
In Sect. 4, a dataset is consideredwhich also contains the identification of the instructor. Here,
a nonstandard inferential question involves the impact of the quality of the instructor on the
test results. Again, we illustrate an analysis of this dataset based on small modifications to
the basic model. Finally, a short discussion and concluding remarks are provided in Sect. 5.

2 The basic Bayesianmodel

We consider test data consisting of an n × k matrix X = (xi j ) where the n rows correspond
to respondents and the k columns refer to test questions. The data are dichotomous (binary)
where xi j = 1(0) specifies that the i th respondent provided a correct (incorrect) answer to
the j th question. Therefore, the setup is applicable in various scenarios including true/false
questions and multiple choice questions.

Our approach is based on a simple Bernoulli model where xi j ∼ Bernoulli(θi j ). The
model stipulates that the probablity of a correct answer by the i th respondent to the j th
question is Prob(xi j = 1) = θi j which leads to the joint probability mass function

f (x | θ) =
n∏

i=1

k∏

j=1

θ
xi j
i j . (1)

An immediate reaction to (1) may be that the model is problematic since there are as many
parameters nk as there are data values. However, in a Bayesian approach, prior information
concerning the parameters is often available and parameters may “borrow” from one another
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such that the effective parametrization is reduced. For example, two parameters may have a
common prior distribution; learning about one of the parameters is effectively learning about
both parameters.

What makes our Bayesian approach different from CTT is that the focus changes from
calculations performed on the data xi j to calculations performed on the parameters θi j . We
suggest that the θi j are intrinsically of more interest than the observed xi j . For example,
there is typically more interest in the quantity θi · = ∑k

j=1 θi j which is an ability measure of

the i th subject rather than the subject’s one-off test score xi · = ∑k
j=1 xi j . Similarly, θ̄· j =∑n

i=1 θi j/n describes the difficulty of test question j where the formulation acknowledges the
randomness of test questions. One may think of test question j as arising from a population
of questions. The idea of focusing on population quantities (i.e. parameters) rather than
statistics (i.e. data) has been previously explored; see for example Swartz [11] in the context
of clustering.

And herein lies a second possible reaction—the θi j ’s are unknown. How can one learn
about the parameter matrix θ = (θi j ), especially in cases where the posterior distribution
is complex and high-dimensional? Under a simulation-based Bayesian approach, θ ’s are
generated from the posterior distribution, from which posterior quantities of interest can be
calculated. With samples generated from the posterior, variability of the posterior quantities
can also be determined. For example, we have mentioned that the quantity θi · = ∑k

j=1 θi j is
an ability measure of the i th student and its posterior meanmay be a quantity of interest. If we
denote θ

(l)
i j as the lth realization of θi j generated from the posterior distribution, l = 1, . . . , M ,

then the posterior mean E(θi · | x) can be estimated by θ̂i · = ∑M
l=1

∑k
j=1 θ

(l)
i j /M . We may

also obtain the corresponding standard error of θ̂i · by SD = [∑M
l=1(

∑k
j=1 θ

(l)
i j )2/M−θ̂2i · ]1/2.

The only additional ingredient that is required for the Bayesian implementation is the
specification of a prior distribution on the parameters. A prior density π(θ) is combined with
the Bernoulli sampling model to yield the posterior density

π(θ | x) ∝ f (x | θ) π(θ)

∝
n∏

i=1

k∏

j=1

θ
xi j
i j π(θ). (2)

Although prior distributions may be subjective and take into account expert knowledge,
we utilize empirical Bayes priors in the applications presented in Sects. 3 and 4.

One of the added advantages of a Bayesian approach is the elegance and ease with which
missing data can be handled. For example, there are exams where test questions are ran-
domly generated from a databank for each student or subsets of students. In these situations,
individual students answer only some of the questions. In this sense, there is missing data.
We therefore distinguish between the observed data xobs and the missing data xmis. Letting
f denote generic functions, the relevant posterior distribution in this case is given by the
posterior density

π(θ, xmis | xobs) ∝ f (θ, xmis, xobs)

= f (xmis, xobs | θ) π(θ) . (3)

The key observation from (3) is that f (xobs, xmis | θ) π(θ) is the unnormalized posterior
density that one would obtain if xmis were actually observed. Therefore, one simulates as
before except that xmis takes the role of a random parameter rather than a fixed data value.
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Above, we have alluded to simulation-based Bayesian software. For this purpose, we use
the JAGS programming language which is relatively simple and avoids the need of special
purpose Markov chain Monte Carlo code. JAGS is open source software (http://www.mcmc-
jags.sourceforge.net) which is similar to WinBUGS. To handle missing data in JAGS, we
need only code the unobserved data values with the NA symbol. Details on WinBUGS and
an introduction to the Bayesian approach are given by Lunn et al. (2013).

3 Extension 1: ordinal outcomes

Wenowconsider a generated dataset intended tomimic data arising from the aviation industry.
The benefit of a generated dataset is that we know the “truth” (i.e. the underlying parameters)
and can assess whether the proposed methods provide accurate estimates. Here, n = 80
pilots are evaluated on k = 20 tasks from a flight simulator. In this case, the data consists
of an n × k matrix X = (xi j ) where the outcomes are no longer dichotomous (0/1) as in
Section 2. Rather, the outcomes are measured on a five-point scale where 1 ≡ very poor, 2
≡ not meeting expectations, 3 ≡ normal, 4 ≡ exceeding expectations and 5 ≡ outstanding.

In this setting, the first challenge is to assign a sampling distribution to the data.We choose

xi j ∼ 1 + Binomial(4, θi j ). (4)

Technically, the specification in (4) is not ideal as the Binomial distribution is appropriate for
ratio data and our data are ordinal. However, the Binomial distribution is appealing since it
is based on a single unknown parameter θi j which describes the difficulty of the j th question
for the i th pilot. Furthemore, the distribution in (4) has the correct range, xi j = 1, 2, 3, 4, 5
and its probability mass function exhibits concavity with the presence of an interior mode
provided that θi j �= 0, 1.With test scores, we would naturally expect decreasing probabilities
as we move away from the mode towards more extreme scores in the tails. In the sampling
model (4), θi j represents a pilot/task characteristic. For θi1, j > θi2, j , pilot i1 has an expected
stronger performance than pilot i2 on task j . Similarly, for θi, j1 > θi, j2 , it is expected that
task j1 is easier than task j2 for pilot i . Following (2), this leads to the posterior density

π(θ | x) ∝
n∏

i=1

k∏

j=1

θ
xi j−1
i j (1 − θi j )

5−xi j π(θ). (5)

The next challenge is the specification of the prior density π(θ) in (5). Our suggested prior
density has the following structure

π(θ) =
∏

i, j

π(θi j )

where the θi j are conditionally independent with

θi j ∼ truncated-Normal(μi j , σ
2
i j ). (6)

In (6), there are various potential specifications for the hyperparameters μi j and σi j . A
simple choice is μi j = k1 (say k1 = 0.5), and σi j = k2 (large, say k2 = 20). This nearly
corresponds to a flat prior over the interval (0, 1). However, such a prior does not take into
account the physical knowledge associated with test analysis. For example, some questions
are typicallymore difficult than other questions andwewould like to take this prior knowledge
into account. A drawback of a flat prior [i.e., Uniform(0,1)] is that the posterior mean of θi j
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is pulled towards the prior mean 0.5 to the extent that our inferences depart markedly from
CTT inferences. This is illustrated in Silva et al. [10].

Another possibility for the specification of the hyperparametersμi j and σi j in (6) based on
an empirical Bayes (EB) procedure. One EB procedure requires fitting (4) with a generalized
linear model (glm) where we introduce the parametrization

logit(θi j | β0, αi , γ j ) = β0 + αi + γ j . (7)

The logistic relationship (7) states that good pilots (i.e., pilots i where αi is large) tend to
perform better across all tasks and that simple tasks (i.e., tasks j where γ j is large) tend to
be easier across all pilots. A difficulty with this parametrization is that the prior too closely
resembles the likelihood, and we do not observe the desired shrinkage in parameter estimates
which is discussed later in the following example.

Our preferred choice for the prior specification of μi j in (6) is similar to (7) but is based
on fitting the simpler glm

logit(θi j | β0, γ j ) = β0 + γ j (8)

which states that simple tasks (i.e., tasks j where γ j is large) tend to be easier across all
pilots. In addition to enabling shrinkage, an additional advantage of (8) over (7) is that we
may fit (8) using the same test questions from other pilots to obtain our prior. In that case, we
have a “true” prior rather than an EB procedure. Using (8), the fitted glm provides parameter
estimates β̂0 and γ̂ j . Since μi j denotes the mean E(θi j ), we therefore invert the logistic
function (8) and set

μi j = exp(β̂0 + γ̂ j )

1 + exp(β̂0 + γ̂ j )
.

We treat σi j = k as a tuning parameter where larger (smaller) values of k provide relatively
less (more) weight on the prior structure and more (less) weight on the data. In this example,
we choose σi j = 0.2 which allows both likelihood and prior to impact the posterior. The
calculation of the estimates μi j are immediately available from the predict function which
can be used on a glm object in R.

Following the model development described above, the data generation procedure begins
by setting the underlying parameters in (7) according to β0 = 0, αi = (i − 1)/n and
γ j = ( j − 1)/k for i = 1, . . . , n and j = 1, . . . , k. With these prescribed values, the θi j
terms are determined via (7) and we generate data xi j according to (4). Under these settings,
the test scores xi j tend to increase with increasing i and increasing j . The values of β0, αi and
γ j were chosen so that pilots tend to have high test scores as is typically the case in practice.
For example, with our dataset, pilot #1 scored 69 out of 100 and pilot n = 80 scored 88 out
of 100.

The first thing that we wish to check is the estimation procedure. In Fig. 1, we plot the
posterior means of the test scores of pilots E(Ti | x) = ∑k

j=1(1 + 4E(θi j | x)) verus the
associated quantity E(Ti | θi ) = ∑k

j=1(1+4θi j )where the θi j are the true underlying values
obtained from (7) based on the specified settings of β0, αi and γ j in the data generating
mechanism. The agreement in the pairs suggest that the model and the associated Markov
chain procedure are producing sensible results. The dispersion of points about the line y = x
describes the natural variation based on randomly generated data. We also see that the pairs
of points are generally increasing with i and this is in keeping with the fixed settings of αi .

To get a sense of the utility of the approach in this nonstandard problem, we investigate
the average performance of pilots by looking at posterior quantities associated with θi · =
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Fig. 1 Based on theMarkov chain output, the posterior means of total pilot scores E(Ti | x) are plotted against
their expected underlying values E(Ti | θi )

∑k
j=1 θi j . The quantity k + 4θi · can be interpreted as the expected total score on the test

(consisting of k questions) which we would expect to be attained by the i th pilot. In Fig. 2,
we plot 90% posterior bands of this quantity for the n = 80 pilots in the study. The posterior
intervals were estimated fromM = 10,000 runs of aMarkov chain obtained from JAGSwhere
the tuning parameter in (6) was again set at σi j = 0.2. The posterior intervals in Fig. 2 based
on the empirical Bayes procedure are appealing as they allow us to differentiate between
pilots. Specifically, we observe performance differences between pilot pairs corresponding
to small and large i . We also observe a shrinkage effect where expected test scores are smaller
(larger) for those pilots who attained high (low) test scores. As an example of a pilot with
a low test score, pilot 22 had an actual test score of 71/100 and an expected test score of
k + 4θ22· = 73.12. As an example of a pilot with a high test score, pilot 49 had an actual test
score of 85/100 and an expected test score of k + 4θ49· = 78.51. Doing exceedingly well
(poorly) on a test may be perceived as being partially lucky (unlucky). This is a standard
regression to the mean effect. Note that by increasing (decreasing) the tuning parameter σi j
we can decrease (increase) the shrinkage effect. To illustrate the effect of the tuning parameter
σi j = k, we repeat the above calculations for pilot 49. With σi j = 0.22, the expected test
score k + 4θ49· is 78.46. With σi j = 0.18, the expected test score k + 4θ49· is 78.64.

We next investigate the comparative difficulty of the k = 20 tasks undertaken by the
pilots as described by θ̄· j = ∑n

i=1 θi j/n, j = 1, . . . , 20. In Fig. 3, we plot the associated
90% posterior bands. We observe that there is a general decrease in the level of difficulty of
test questions (i.e., increasing θ̄· j ). This is in accordance with the data generatingmechanism.

We may also be interested in the redundancy of tasks. The problem of survey fatigue is
well-known in the survey literature where it is not desirable to have two questions that address
essentially the same problem for which the responses are similar. We therefore consider the
correlation parameter

123



Bayesian treatment of non-standard problems in test analysis

70

75

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Pilot Number

k
+

4 θ
i.

Fig. 2 Posterior intervals (90%) of the expected posterior test scores k + 4θi · for the n = 80 pilots
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Fig. 3 Posterior intervals (90%) for the task difficulty parameter θ̄· j for the j = 1, . . . , 20 tasks in the study
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Fig. 4 Scatterplot of the posterior output of θi,1 and θi,2 based on a single iteration from the Markov chain

r j1, j2 =
∑n

i=1(θi, j1 − θ̄· j1)(θi, j2 − θ̄· j2)√∑n
i=1(θi, j1 − θ̄· j1)2

√∑n
i=1(θi, j2 − θ̄· j2)2

which compares the similarity of tasks j1 and j2. With k = 20 tasks, there are (k2) = 190
correlations of interest. In each iteration of the Markov chain, r j1, j2 can be calculated and
these values are averaged over the M iterations to provide a posterior mean of r j1, j2 . In
Fig. 4, we provide a scatterplot corresponding to the posterior output of θi,1 and θi,2 based on
a single Monte Carlo iteration after burn-in. The plot consisting of n = 80 points examines
the comparative difficulty of tasks #1 and #2. Although these two questions (tasks #1 and #2)
are similar in difficulty, we recall that the data were generated independently with respect to
pilots and tasks. Therefore, we should not expect a correlation between these two tasks, and
we observe the expected posterior mean E(r1,2 | x) = − 0.025 which is indeed small. With
real data, if the correlation between two tasks is strong, this suggests that the two tasks are
redundant, and in the interest of efficiency and survey-fatigue, perhaps one of the tasks could
be removed from the test.

4 Extension 2: assessment of instructors

In this nonstandard application in test analysis, we are interested in the assessment of instruc-
tors. For example,wemayhave L instructorswhoare each responsible for a cohort of students.
In this case, every observation xi j has an added subscript such that xi jl denotes the score
by the i th student on the j th question, and this student received instruction on this question
by instructor l. We similarly extend the notation for the parameters leading to terms θi jl .
In the assessment of instructors, it would be difficult to conclude a causal relationship due
to instructors if the students were not randomized amongst instructors. For example, there
could be an underlying confounding variable that is associated with instructor differences.
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Table 1 An entry of 1(0) in the (i, j)th cell indicates that Instructor i provided (did not provide) instruction
to student j on all k = 11 tasks

Student

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

Instructor1 1 1 1 1 1 0 0 0 0 0 0 0

Instructor2 1 1 0 0 0 0 0 0 1 1 1 1

Instructor3 0 0 0 0 0 1 1 1 1 1 1 1

Instructor4 1 0 0 0 0 0 1 1 1 1 1 1

Instructor5 1 1 1 0 0 0 0 0 1 1 1 1

Instructor6 1 1 1 1 0 0 0 0 1 1 0 0

Instructor7 1 0 0 0 1 1 1 0 0 0 0 1

Instructor8 1 1 0 0 0 1 1 0 0 0 0 0

Instructor9 0 0 0 0 0 0 0 0 1 1 1 1

Instructor10 1 1 0 0 0 0 0 0 0 0 1 1

Instructor11 1 1 0 0 0 0 0 1 1 0 0 1

Instructor12 1 1 0 0 0 0 1 1 1 0 0 0

The above setup is also applicable to other situations. For example, a comparison of different
groups of students may be of interest.

We consider a complex design involving n = 12 students, k = 11 test questions on a five-
point ordinal scale (1–5) and L = 12 instructors. As in Sect. 3, the questions are tasks so that
students may have more than one response to a specific task with each response associated
with a specific instructor. The experimental design is summarized in Table 1. The discussion
in Sect. 2 on missing data is particularly relevant in this example as we have many cases of
missing data due to students not having received instruction by a given instructor (e.g., x1, j,3
for all j = 1, . . . , k).

The statistical model which we consider is similar to Sect. 3 where we now define

xi jl ∼ 1 + Binomial(4, θi jl) (9)

which leads to the posterior density

π(θ | x) ∝
n∏

i=1

k∏

j=1

L∏

l=1

θ
xi jl−1
i jl (1 − θi jl)

5−xi jl π(θ) (10)

where θ is the parameter space. Also, following Section 3, we specify the prior density π(θ)

in (10) according to

π(θ) =
∏

i, j,l

π(θi jl)

where the θi jl are conditionally independent with

θi jl ∼ truncated-Normal(μi jl , σ
2
i jl). (11)

In (11), the truncation again corresponds to the interval (0, 1) and the parameters μi jl and
σi jl are specified according to an EB procedure. The EB procedure first requires fitting (9)
with a glm where we define
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Fig. 5 Posterior intervals (90%) for the instructor rating index θ̄··l for the l = 1, . . . , 12 instructors in the
study

logit(θi jl | β0, γ j , λl) = β0 + γ j + λl . (12)

The difference between (12) and (8) involves the inclusion of the λl term in (12) which
accounts for the instructor effect. Following the development in Sect. 3, the estimates β̂0, γ̂ j

and λ̂l are used to specify μi jl in (11). We again treat σi jl = k as a tuning parameter.
Our interest in instructors may be expressed by the rating index θ̄··l = 1

n
1
k

∑n
i=1

∑k
j=1 θi jl

for instructors l = 1, . . . , L which can be interpreted as the average probability of a correct
answer based on instruction from instructor l. Posterior realizations of the parameters θi jl are
generated as before, and these are used to obtain more complex quantities of interest such
as θ̄··l .

Using our data, in Fig. 5, we plot 90% confidence bands for the instructor rating index θ̄··l
for the L = 12 instructors. According to the plot, we observe that Instructor 1 is the “best”
instructor and that Instructor 9 is the “worst” Instructor. These inferences are consistent
with the observed data where Instructor 1 had 5 students whose observed average score
was 39.8/55, and Instructor 9 had 4 students whose observed average score was 30.0/55.
The posterior mean scores corresponding to these instructors (1/n)

∑n
i=1

∑k
j=1(4θi jl + 1)

were 38.68 (l = 1) and 30.45 (l = 9) which demonstrates a desirable shrinkage effect from
observed scores to posterior mean scores.

The approach developed here may be adapted to other inferential questions of interest.
For example, suppose pilot i had received instruction from instructor l1 but we are interested
in the counterfactual situation of how the pilot might have performed under instruction
from instructor l2 when no instruction was actually received by pilot i from instructor l2. The
average test score of pilot i under instruction from instructor l is given by Ti ·l = ∑k

j=1(4θi jl+
1). Therefore, the question of interest is addressed by comparing Ti ·l1 with Ti ·l2 . When i = 1,
l1 = 1 and l2 = 9, we have posterior means and posterior standard deviations of Ti ·l given by
41.03 (1.73) for l1 and 30.52 (2.36) for l2. It is apparent that instructor l1 = 1 is much more
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effective than instructor l2 = 9 with respect to instruction given to pilot i = 1. Notably, it is
not clear how a CTT or IRT approach could be used to investigate this complex query.

5 Discussion

We have extended the methods of [10] to handle nonstandard problems in test analysis. We
see that it is not difficult to modify the basic Bayesian model where inference is facilitated
using posterior realizations from a Markov chain. The two nonstandard problems that are
considered in this paper are real problems of interest in the aviation industry.

One of the features of the proposed approach is that the parameters that we have studied
in this paper θi ·, θ̄· j and r j1, j2 (see Sect. 3) are direct analogs of the popular statistics which
one would naturally study in the CTT framework (i.e. xi ·, x̄· j and rxi1 ,xi2

). In Sect. 3, we have
studied data arising on the scale 1,2,3,4,5 which differs from the typical 0/1 data arising from
multiple choice exams and true/false questions. In Sect. 4, our investigation was focused
on the parameter θ··l whose analogous CTT statistic x··l may not even be calculable due to
missing data. An appeal of CTT over the years is that CTT statistics are intuitive and are often
readily adaptive to various test designs. An advantage with our simulation-based Bayesian
approach is that we have inferential capabilities to study the θ terms whereas inference does
not form a part of CTT analyses. Another advantage of the Bayesian approach is that one
may be able to incorporate prior knowledge. For example, we have emphasized that it may be
reasonable to assume that good students generally do better than weaker students across all
questions. It may also be possible to use results from previous tests to inform prior opinion.

We believe that the basic approach that we have illustrated here may be modified to suit
other nonstandard problems of interest in test analysis. For example, suppose that the i th
student has taken tests on multiple occasions. It would be a simple matter to treat the student
as a different subject according to the times t1, . . . , tm that tests were written. Accordingly,
the student would have performance measures θ

(t1)
i · , . . . , θ

(tm )
i · . Posterior estimates and asso-

ciated intervals for these performance measures could then be plotted against time to assess
improvement.

Data and code developed in this paper (both R and JAGS) are available from the authors
upon request.
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